
Abstract. The model proposed by Dougherty for the
design of high-spin organic systems has been studied
from a quantitative point of view using a Heisenberg
Hamiltonian formalism. This analysis leads to a decom-
position of the phenomenological coupling parameter, J ,
into contributions from individual active orbital sites
and a decomposition of the spin multiplicity into terms
from the ferromagnetic coupling unit and the spin-
containing units. An analysis of the origin of quintet
stability has been carried out for four molecular systems
with quintet ground states that have previously been
synthesized by Dougherty and by Adam. The results
indicate that the ferromagnetic coupling unit plays the
dominant role in determining high-spin stability as
suggested by Dougherty and gives some insights that
may be useful in the rational design of high-spin systems.

Key words: Ferromagnetic coupling ± Heisenberg
Hamiltonians ± CASSCF

1 Introduction

In the design of large organic molecules with high-spin
states, Dougherty [1, 2] has proposed a conceptual
model (founded on the pioneering work of Itoh [3a])
based on ``linking'' basic building units as shown in
Scheme 1. (Other examples of structures with large spin

states and similar mechanism are the polycarbenes,
compounds with one-centred interactions placed in

delocalized, planar p-systems [3b±e].) The high-spin
state in these systems is stabilized by the presence of a
ferromagnetic coupling (FC) unit which couples spin-
containing (SC) units with high-spin ground states.

The simplest situation is a single SC-FC-SC system.
In the systems studied by Dougherty et al. [2] (and those
recently synthesized by Adam et al. [4]), the SC units are
triplets (as isolated molecules) coupled via the FC unit.
In this case, Dougherty proposes to model [2] the in-
teraction of two triplets, considering a phenomenologi-
cal Hamiltonian of the form

Ĥ � ÿ2JŜ1 � Ŝ2 �1�
where Ŝ1 and Ŝ2 are the spin operators for the SC units
and J is the coupling parameter (or e�ective exchange
integral). In his model, Dougherty associates J in Eq. (1)
with the FC unit alone so that the coupling parameter is
denoted JFC. The energy gap between the low-spin (LS)
coupling and high-spin (HS) coupling states is then
expressed as:

DESÿHS � ÿ2JFC Ŝ1 � Ŝ2

 �LSÿ Ŝ1 � Ŝ2


 �HS
� �

�2�
In Eq. (2), Ŝ1 � Ŝ2


 �
is the expectation value of the

product of the total spin operators for each SC unit, and
is given as

Ŝ1 � Ŝ2

 � � 1

2 s12�s12 � 1� ÿ s1�s1 � 1� ÿ s2�s2 � 1�� � �3�
where s1 and s2 are the spins of SC1 and SC2,
respectively, and s12 is the vector sum of s1 and s2. The
energy level diagram for two interacting triplets [2] is
given in Fig. 1, from which it can be seen that the sign of
JFC determines the multiplicity of the ground state of the
molecule. The sign of JFC, in turn, depends on the nature
of the FC unit. With this model, Dougherty was able to
correlate observed high-spin organic systems with the
occurrence of FC units that had triplet ground states as
isolated molecules.

In this paper we have two objectives. Firstly, in the
Dougherty model [2], no attempt was made to under-
stand why a triplet FC unit yields a JFC > 0. Accord-
ingly, we shall give a theoretical prescription for the
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computation of J and the computation of the spin of the
FC unit in the molecule itself. Secondly, Dougherty as-
sumes that the low-spin state arises from the coupling of
the triplet states of the SC units to a singlet, as it is
shown in Fig. 1. However, this assumption needs to be
tested. In fact there are two possibilities, as shown in
Fig. 2. The singlet state can also arise from the interac-
tion of the two singlet SC units, when the energy gap
between the triplet and the singlet of the SC is small. In
this case, the magnitude and sign of JSC, the coupling
inside the SC unit, can have a role to play in the value of
J . For this case, Dougherty proposed the Hamiltonian
[5]:

Ĥ � ÿ2JAŜ2 � Ŝ3 ÿ JB Ŝ2 � Ŝ3
ÿ � � Ŝ1 � Ŝ4

ÿ �� � �4�
where JA represents the spin-polarization mechanism
(related to JFC) and JB characterizes the superexchange
mechanism (in relation with JSC). The numbers 1±4 refer
to the radical centres of the molecule. Dougherty
pointed out that both JA and JB must be positive to a
Q ground state result. Of course, in the Dougherty
model, the values of JFC and JSC are assumed to be
characteristic of the isolated FC and SC units. In Fig. 2b
we are assuming that S1 and S2 do not interact strongly
so that the problem can be represented with two
parameters. It remains to be demonstrated that these
concepts retain their validity in the supermolecule itself.
As we shall subsequently show, we can ®nd examples
where the spin multiplicity is determined by JFC and
others where JSC plays an important role.

2 Theoretical development

Our objective is to cast the phenomenological Hamilto-
nian given in Eq. 2 into a form where the parameters can
be obtained from ab initio or semi-empirical computa-
tions. This is easily accomplished by using valence bond
(VB) methods via a Heisenberg Hamiltonian. We can
write a general Heisenberg Hamiltonian as:

ĤS � Qÿ
X

ij

Jij 2ŝi � ŝj � 1

2
Îij

� �
�5�

where the ŝi is the spin operator associated with site i; Îij
is the identity spin operator, the parameter Q is the
Coulomb energy (a reference energy zero) and Jij is the
exchange energy between the spin-orbitals i; j [6]. This
Hamiltonian corresponds to a model with empirical
parameters Jij that correlates chemical binding e�ects
with spin coupling (although there is no real coupling
between the electron spins). The Heisenberg Hamiltoni-
an given in Eq. (5) can be understood as an e�ective
Hamiltonian computed from an exact full con®guration
interaction (CI) Hamiltonian using a model space of
neutral VB determinants formed from n electrons in n
atomic orbitals [7]. We have shown elsewhere [8] that
one can derive Q and Jij from CASSCF computations
via an e�ective Hamiltonian formalism. In this case, one
can use a localized atomic orbital basis and these
orbitals can be identi®ed with sites i and j. Thus Eq.
(5) can be rewritten in a second quantized form as:

ĤS � Qÿ
XN

ij

Jij i�1�j�2�jŝi � ŝj



� 1
4 Î�1; 2�ji�1�j�2��a�i a�j ajai �6�

As discussed previously [8a], this operator connects
con®gurations with the same space part which di�er
only in the spin contribution. Any full CI Hamiltonian
can be projected onto such a space and a subset of the
eigenvalues can be reproduced exactly [8b].

We must now relate the formalism embodied in Eqs.
(5) or (6) with Eqs. (1) and (2) that are used in the
Dougherty model. It is convenient to introduce exchange
density matrix elements Pij (see [8a]) de®ned by

Pij � ÿ 2ŝi � ŝj � 1
2Îij

ÿ �
 � �7�
The expectation value of the Hamiltonian in Eq. (6) is
thus given as:

ĤS

 � � Q�

X
ij

JijPij �8�

The analogue of Eq. (2) then becomes

DELSÿHS �
X

ij

JijDPLSÿHS
ij �9�

where DPLSÿHS
ij is just the di�erence in the matrix

elements Pij for the low- and high-spin states. Notice that
the summations in Eq. (9) run over all active sites i and j.
Thus JSC and JFC are associated with partial summations
(over orbitals in the SC and FC units) of JijDPLSÿHS

ij .
Further, we have [9]

Fig. 1a,b. Energy level diagram for two interacting triplets
[eigenvalues of the Hamiltonian in Eq. (1): a quintet ground state
JFC > 0. b singlet ground state JFC < 0

Fig. 2a,b. Energy level diagram including the singlet state S2
arising from coupling of two singlet states in the SC unit and singlet
state S1 arising from coupling of two triplet states in the SC unit.
a Lower singlet state is S1 obtained from the interaction of two
triplets in the SC unit. b Lower singlet state is S2 obtained from the
interaction of two singlets in the SC unit. In this case, the energy
gap between the quintet and the ®rst singlet is given by two
contributions: JFC and JSC (if 2JSC < 4JFC)
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S�S � 1� � ÿ n�nÿ 4�
4

ÿ
Xn

ij

Pij �10�

for n electrons and n orbitals. Thus, by examining partial
summations of the Pij we can partition the total spin into
FC and SC fragments. We now explore a possible
decomposition of Eqs. (9) and (10) that yields an
understanding of the Dougherty model. However, in
order to understand the motivation for such a decom-
position we ®rst brie¯y indicate the physical interpretat-
ion of Jij and Pij.

The Pij parameters indicate the nature of the spin
coupling between sites i and j. With a single-con®gura-
tion perfectly paired VB wavefunction (Rumer functions
[10]): Pij � ÿ1 when the electrons have parallel spins
(ferromagnetic coupling) and Pij � 1 when they are
singlet coupled (antiferromagnetic coupling). However,
the computed Pij values di�er from the ``ideal'' values
because of con®guration interaction.

The exchange parameter Jij in Eq. (9) is interpreted in
terms of the electron distribution as the Heitler-London
exchange

Jij � ijjij� � � 2sij ijhjjh i �11�
where ijjij� � is the two-electron repulsion integral whose
value is very small and always positive, sij is the overlap
and ijhjjh i is the one-electron integral (dominated by
nuclear electron attraction). The magnitude of param-
eter Jij is normally dominated by the one-electron term,
which is always negative. However, if the overlap
between the i; j orbitals is zero, then the Jij will be small
and positive.

We now discuss the decomposition of Eqs. (9) and
(10) that yield an understanding of the Dougherty
model. The basis of our decomposition is given in
Scheme 2. There are two common atoms shared by the

SC and FC units: the C atom that belongs to SC1and FC
is labelled m, and atom n belongs both SC2 and FC. We
now write

DELSÿHS �
X

ij

JijDPij

� DESC1 � DESC2 � DEFC

� DESC1ÿSC2 � DESC1ÿFC � DEFCÿSC2r �12�
where

DESC1 �
XSC1

i;j2SC1

JijDPij;

DESC2 �
XSC2

i;j2SC2

JijDPij;

DEFC �
XFC

i;j2FC
JijDPij;

DESC1ÿSC2 �
XSC1�SC2

i2SC1
j2SC2

JijDPij ÿ JmnDPmn;

DESC1ÿFC �
XSC1�FC

i2SC1;i6�m
j2FC;j 6�m;n

JijDPij;

DEFCÿSC2 �
XSC2�FC

i2SC2;i6�n
j2FC;j 6�m;n

JijDPij : �13�

We have included the coupling between the electrons
placed in the common atoms m; n in the terms DESC1 ,
DESC2 and DEFC so it must be excluded from DESC1ÿSC2 .
For a similar reason we need the summation restrictions
in the de®nition of DESC1ÿFC and DEFCÿSC2 .

Some qualitative simpli®cations are obvious from the
outset. The value of Jij as de®ned in Eq. (11) has a simple
geometrical dependence on the distance between the
electrons considered. Thus the main contributions to Jij
involve interactions between nearest-neighbour i; j elec-
trons. Accordingly, DESC1ÿSC2 , DESC1ÿFC and DEFCÿSC2

should be negligible, since the orbitals i; j are never
nearest-neighbours because the link sites are included in
DESC1 , DESC2 and DEFC. Thus the important energetic
contributions are contained in the intra-unit quantities
DESC1 , DESC2 and DEFC.

We can now relate the e�ective parameter J used in
the phenomenological Hamiltonian in Eq. (1) with the
expressions in Eq. (13). The energy gap in Eq. (2) must
be compared with the simpli®ed expression
DELSÿHS � DESC1 � DESC2 � DEFC from Eqs. (12) and
(13). In the case shown in Fig. 2a, the energy gap be-
tween the singlet S1and the quintet is expressed as
DES1ÿQ � 6JFC [from Eqs. (1) and (3) with s1 � s2 � 1
for two interacting triplets] and the coupling parameter
is characteristic of the FC unit:

6JFC �
XSC1

ij

JijDP S1ÿQ
ij �

XFC
ij

JijDPS1ÿQ
ij �

XSC2

ij

JijDP S1ÿQ
ij

�14�
On the other hand, in the case shown in Fig. 2b there are
two important contributions to the energy gap between
the quintet and the singlet S2 (which, in this case, is lower
in energy than S1). First of all, there is the stabilization
of the quintet via the FC unit [EQ � ÿ2JFC, the energy
of the quintet obtained from two interacting triplets via
Eqs. (1) and (3)]. Then, there is the destabilization of the
singlet in the SC unit via the JSC�DES2ÿT � 2JSC�. Thus
we have

2JSC ÿ 2JFC �
XSC1

ij

JijDP S2ÿQ
ij �

XFC
ij

JijDPS2ÿQ
ij

�
XSC2

ij

JijDP S2ÿQ
ij �15�

Scheme 2
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The corresponding analysis of the multiplicity of the
fragments can be carried our by decomposing the
summation

Pn
ij Pij in Eq. (10) using the same summation

restrictions as in Eq. (13) to give

P SC1 �
XSC1

i;j2SC1

Pij �16�

and the other analogously de®ned terms. From this, we
can de®ne

S�S � 1�� �SC � ÿ nSC�nSC ÿ 4�
4

ÿ PSC �17�
and

S�S � 1�� �FC � ÿ nFC�nFC ÿ 4�
4

ÿ PFC �18�
where nSC and nFC are the number of electrons in the SC
and FC units, respectively.

3 Computational details

Our objective in this work is to rationalize the Dough-
erty model via the computation of Eq. (9). We have used
the CASSCF algorithm to calibrate the molecular
mechanics valence bond (MMVB) results. The compu-
tation of the Jij, however, is not simple for more than
two-electron systems. In the CASSCF framework, these
can be computed via an e�ective Hamiltonian approach
[11], but this is restricted to small active spaces. As
discussed elsewhere [8], the Jij parameters in MMVB
were obtained from CASSCF computations. However,
only the 2sij ijhjjh i contribution is well represented in this
approach. Thus we shall be content with a discussion of
the DPLSÿHS

ij since these can be extracted routinely
from any CI-based method.

The Pij matrix can be obtained from a CASSCF
computation where the active orbitals have been local-
ized. Alternatively, they arise naturally in the MMVB
method that can be used with very large active spaces (24
electrons). MMVB [8] is a hybrid method that uses
a MM2 potential [12] to describe the inert molecule
r-bonded framework and an e�ective Heisenberg [7]
Hamiltonian parametrized against CASSCF computa-
tions to represent electrons on sp2=sp3 carbon atoms
which are involved in p-conjugation.

The method for computation of the Pij matrix from a
CASSCF computation deserves a brief mention. For
practical purposes, the Eq. (6) can be rewritten [8a] in
terms of the standard generators Êrr

ij � a�irajr of the
unitary group U(n) in the form where r � a; b

ĤS � Q�
XM

i;j

Jij
1
2 Êaa

ij Êbb
ji � Êbb

ij Êaa
ji

�
� Êaa

ij Êaa
ji ÿ Êaa

ii

h i
� Êbb

ij Êbb
ji ÿ Êbb

ii

h i�
�19�

Equation (19) forms the basis of a quantum chemistry
implementation of Eq. (6) since the Pij are just the
expectation values of the bilinear forms in Eq. (19).

The Heisenberg Hamiltonian implemented in MMVB
corresponds to Eq. (6) and Eq. (19) and acts on a basis
set of neutral many-electron VB states constructed from
active orbitals which are singly occupied. The Pij ele-
ments are obtained from the CI vectors of the MMVB
[8a] and provide the spin matrix element of the interac-
tion of i; j sites.

The SC-FC-SC systems chosen for our study of the
high-spin radicals are the ones synthesized by Dougherty
(Fig. 3, structures 2 and 3 [1, 2] and structure 4 [5]) and
Adam [4] (Fig. 3, structure 5), which have been shown
experimentally to be quintets in the ground state.
Structure 1 has been studied to compare the Pij com-
puted from CASSCF versus MMVB. All the geometries
of the systems in Fig. 3 have been optimized with the
MMVB method.

4 Results and discussion

We shall begin our discussion with structure 1 (Fig. 3).
Here we have carried out computations both at the
MMVB level and at the CASSCF level. The computa-
tions serve both to orient the reader with a simple
example and to calibrate the MMVB results.

We begin with a comparison of MMVB and CASCF.
In order to calibrate the MMVB method, an 8-orbital
8-electron CASSCF (C pp orbitals on unsaturated sites)
in the 6±31g(d) basis has been used. The starting point
was a UHF/6±31g(d) optimized geometry and the
natural orbitals from this computation were used to
de®ne the starting CASSCF active space [13, 14]. The
optimized quintet geometry is shown in Fig. 4a (for both

Fig. 3. Structures 1±5 and the corresponding SC and FC units
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MMVB and UHF), while the signi®cant DP SÿQ
ij (i; j

neighbour atoms) are collected in Fig. 4b. The DP SÿQ
ij for

MMVB and CASSCF are in qualitative agreement.
Now let us discuss the physical interpretation. The

computed DPSÿQ
ij are all small except for the 1±2 inter-

action in the FC unit (i.e. the interaction between centres
1 and 2 of the FC unit in Fig. 4b), as expected, for both
MMVB and CASSCF. Thus DEFC controls the spin
multiplicity, in agreement with the Dougherty model.
The CASSCF singlet-quintet splitting is 0.60 kcalmolÿ1.
In this simple model where the FC unit has only two
active orbitals, the value of JFC is given as

DESÿQ � 6JFC � 2J12DP SÿQ �20�
The value of J12 obtained from a CASSCF computation
on the isolated FC unit is 0.38 kcalmolÿ1, which when
combined with the computed DP12 gives a singlet quintet
splitting of 0.63 kcalmolÿ1. Thus both MMVB and
CASSCF are in qualitative agreement and the Dough-
erty model seems to hold nicely. Now notice that J12 is
positive. The orbitals i; j � 1; 2 are non-overlapping;
thus the Jij corresponds to the two-electron repulsion
integral [®rst term in Eq. (11)], which is always positive.
Since DPij > 0, the product of DPij and Jij is positive,
which yields the quintet stability.

However, this observation masks a subtlety that is
not usually considered in discussing the Dougherty
model. In fact PS=Q

12 � 0:086=ÿ0:774 at the CASSCF
level and P S=Q

12 � 0:384=ÿ0:778 at the MMVB level.
However, for two isolated electrons, Pij � ÿ1 for the
triplet and Pij � 1 for the singlet. Thus in the quintet

state the FC unit is a triplet approximately (Pij < 0),
while in the singlet state it is nearly a singlet (Pij > 0).
The quintet state is only preferred because DPij > 0.
Thus, the spin coupling in the FC unit is di�erent for
quintet and singlet states and it is, therefore, the triplet
preference of the FC unit in the supermolecule that
gives rise to quintet stability. Thus, the suggestion of
Dougherty appears to have quantitative validity. As we
shall now show, this observation appears to be general
for systems with an energy level diagram of the form
given in Fig. 2a.

We now turn to a general discussion of the results
obtained for structures 2±5 in Fig. 3. We begin with
a discussion of the decomposition of

Pn
ij Pij into P SC1 ,

P SC2 and PFC, which permits the computation of
S�S � 1�� �SC and S�S � 1�� �FC for the individual subunits
via Eqs. (17) and (18). The values of the spin multi-
plicity, 2S � 1, obtained in this fashion are collected in
Table 1. The results indicate an assignment (indicated in
bold) of structures 1±3 into a class where the FC unit
changes multiplicity (from a triplet to the average of a

Fig. 4a,b. Geometry and DPij values for structure 1 (Fig. 3).
a CAC distances for the active neighbour atoms, optimized for
the quintet state in MMVB and CAS (in parentheses). b DPij values
for the nearest-neighbour active atoms in MMVB and CAS
(in parentheses)

Fig. 5a,b. Geometry and DPij values for structure 2 (Fig. 3).
a CAC distances for the active neighbour atoms, optimized for the
quintet state in MMVB. b DPij values for the neighbour active
atoms (1±8) in MMVB
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singlet and triplet) between the quintet and singlet states
while the spin multiplicity of the SC units remain un-
changed. Thus the energy level diagram corresponds to
Fig. 2a. We shall refer to this class as FC controlling
(structures 2 and 3). In contrast, structures 4 and 5 be-
long to the class corresponding to the energy level dia-
gram shown in Fig. 2b and we shall refer to these
systems as SC controlling. Here the FC unit has the same
multiplicity (a triplet) between the quintet and singlet
states while the spin multiplicity of the SC units changes
from a triplet to the average of a singlet and triplet be-
tween the quintet and singlet states.

Now let us turn our discussion to DESC1 , DESC2 and
DEFC. We focus on DPFC

ij and DP SC
ij , remembering that

for non-overlapping orbitals Jij will be positive and
DPij will be positive to obtain quintet stability, but
for overlapping orbitals (nearest neighbours) Jij will
be negative and DPij will be negative. The optimized
geometries (for the quintet state) together with the
signi®cant DPij are collected in Figs. 5±8 for structures
2±5 (Fig. 3).

For the FC controlling class, structures 2 and 3 di�er
mainly in the nature of the FC unit. Structure 2 has an
FC unit with two non-overlapping orbitals, similar to

structure 1. However, the FC unit in structure 3 is a
delocalized system composed of overlapping orbitals.
Thus the nearest-neighbour Jij must be negative.
Accordingly, high-spin preference in the FC unit will
be associated with negative values for both Jij and DPij
in the dominant contributions.

The results for structure 2 (Fig. 5) are similar to
structure 1. The DP SC

ij for the SC units are very small;
therefore this system is FC controlling. The value of
DPFC

4;5 is large and positive (see Fig. 5 for centre num-
bering), consistent with the case of non-overlapping or-
bitals 4 and 5. Structure 3 has a di�erent FC unit and
corresponds to a delocalized FC unit. The results for
structure 3 are collected in Fig. 6, in which the centre
numbering is shown. Here again the DP SC

ij for the SC
units are very small. The DPFC

ij are dominated by the
nearest-neighbour contributions and the DPFC

4;5 and
DPFC

7;11 contributions dominate and are negative. In Fig. 9
we show the individual PFC

4;5 and PFC
7;11 contributions as

well as the PFC
4;11 between the unpaired electrons of the FC

unit. In the quintet state (Fig. 9b) the PFC
4;11 value is close

to ÿ1 (characteristic of the triplet state of the FC unit),
while PFC

4;11 in the singlet is near zero (characteristic of the
fact that the FC unit is an average of singlet and triplet).
The individual PFC

4;5 and PFC
7;11 contributions for the

quintet state are large and positive, leading to the neg-
ative values for the DPFC

4;5 and DPFC
7;11 contributions. Thus

the quintet stabilization by the FC unit is due to the
creation of strong singlet coupling across the 4,5 and
7,11 links.

We now turn to structures 4 and 5 (Figs. 7 and 8). We
have referred to these structures as SC controlling be-
cause the spin multiplicity of the SC units changes.
Notice that the dominant DP SC

ij involve DPSC
1;2 and DP SC

13:14
in structure 4 and DP SC

1;2 and DP SC
9;10 in structure 5. These

DP SC
ij are positive and are associated with non-overlap-

ping orbitals. However, the quintet stability here must be

Fig. 6a,b. Geometry and DPij
values for structure 3 (Fig. 3).
a CAC distances for the active
neighbour atoms, optimized for
the quintet state in MMVB.
b DPij values for the neighbour
active atoms (1±14) in MMVB

Table 1. (2S+1) for SC and FC units

System SC unit FC unit
(2S + 1) computed
from PSC

(2S + 1) computed
from PFC

Quintet Singlet Quintet Singlet

(1) 3.000 2.985 2.848 1.861
(2) 3.000 2.987 2.860 1.856
(3) 2.952 2.904 2.956 1.856
(4) 2.900 1.596 2.971 2.867
(5) 2.886 1.933 3.000 2.989
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controlled by both JFC and JSC; thus the quintet singlet
splitting is approximately 2JSC ÿ 2JFC. However, it is
still the FC unit that controls the quintet singlet stability
overall. The value of Jij between the unpaired electrons
in the SC units for both structures 5 and 6 will be very
small (i.e. orbitals i; j are non-overlapping). Thus JSC

ij
corresponds to the two-electron repulsion integral [i.e.
the ®rst term in Eq. (11), which is always very small and
positive]. In contrast, JFC

ij are controlled by the nearest-
neighbour contributions that are large and negative be-
cause the 2sij ijhjjh i term dominates, but the DPFC

i;j are
very small because the spin of the FC unit does not
change. Therefore, it is apparent that the structures
should have a much smaller quintet-singlet gap. Thus a
successful design strategy for high-spin systems requires
both an e�ective FC unit and an SC unit with a large
singlet-triplet splitting.

5 Conclusions

We have examined the model proposed by Dougherty
for the design of high-spin systems from a quantitative
point of view. It would appear that for FC controlling
systems, where the spin multiplicity of the FC unit itself

Fig. 8a,b. Geometry and DPij values for structure 5 (Fig. 3).
a CAC distances for the active neighbour atoms, optimized for the
quintet state in MMVB. b DPij values for the neighbour active
atoms (1±10) in MMVB

Fig. 9a,b. Computed P4;5 and P4;11 values in the delocalized FC
unit structure contained in structure 3. a The singlet state. b The
quintet state

Fig. 7a,b. Geometry and DPij
values for structure 4 (Fig. 3).
a CAC distances for the active
neighbour atoms, optimized for
the quintet state in MMVB.
b DPij values for the neighbour
active atoms (1±14) in MMVB

315



changes from triplet to an average of singlet and triplet
(as the total spin multiplicity changes from quintet to
singlet), his model may yield a good design strategy. This
is particularly true for the case where the FC unit is a
delocalized system with a large singlet-triplet gap.
However, for localized FC units such as structure 2,
this may not always be e�ective. On the other hand,
where the singlet-triplet gap in the SC unit is small
(structures 4 and 5), the spin multiplicity of the FC unit
hardly changes and the contribution of JSC must be
taken into account.
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this project. All computations were carried out on an IBM-SP2
funded jointly by IBM-UK and HEFCE (UK).
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